
Synthesis of substituted pyridine based sulphonamides as an antidiabetic agent
Main Article Content
Abstract
This research work describes the synthesis of a new series of heterocyclic compounds, namely sulfonamide derivatives. Sulfonamides are a diverse class of organic compounds having significant and potent biological activities. Diverse synthetic methods have been engaged to build up its various derivatives for different biological functions. In this study, the production of novel pyridine-based heterocyclic compounds having sulfonamide moieties has been elaborated. The obtained sulfonamide-based pyridine scaffold was used to investigate their alpha-amylase inhibition activity. The structures of freshly prepared compounds were described using 1H NMR, 13C NMR, and IR spectroscopic techniques. The molecular docking of sulfonamides performed against porcine pancreatic alpha-amylase using PDB file 1LP was used for generation of grid. All the new synthesized compounds were shown notable anti-diabetic activity.


Article Details
10.2174/1570193X20666230725103217
10.1016/j.ejmcr.2024.100210
10.1080/10406638.2023.2177681
10.2174/1570178620666230525142927
10.5155/eurjchem.15.3.226-231.2532
10.5155/eurjchem.14.4.466-472.2468
10.1039/D2RA01571D
10.3390/app12115487
10.1155/2023/3601764
10.1080/17568919.2024.2432289
[1]. Hansch C., Sammes P. G., Taylor J. B. Comprehensive Medicinal Chemistry, Vol. 2, Pergamon Press, Oxford, 1990.
[2]. Kanda, Y.; Kawanishi, Y.; Oda, K.; Sakata, T.; Mihara, S. I.; Asakura, K.; Kanemasa, T.; Ninomiya, M.; Fujimoto, M.; Konoike, T. Bioorg. Med. Chem. 2001, 9 (4), 897-907.
https://doi.org/10.1016/S0968-0896(00)00305-9
[3]. Stokes, S. S.; Albert, R.; Buurman, E. T.; Andrews, B.; Shapiro, A. B.; Green, O. M.; McKenzie, A. R.; Otterbein, L. R. Bioorg. Med. Chem. Lett. 2012, 22 (23), 7019-7023.
https://doi.org/10.1016/j.bmcl.2012.10.003
[4]. Chibale, K.; Haupt, H.; Kendrick, H.; Yardley, V.; Saravanamuthu, A.; Fairlamb, A. H.; Croft, S. L. Bioorg. Med. Chem. Lett. 2001, 11 (19), 2655-2657.
https://doi.org/10.1016/S0960-894X(01)00528-5
[5]. Ezabadi, I. R.; Camoutsis, C.; Zoumpoulakis, P.; Geronikaki, A.; Soković, M.; Glamocilija, J.; Cirić, A. Bioorg. Med. Chem. 2008, 16 (3), 1150-1161.
https://doi.org/10.1016/j.bmc.2007.10.082
[6]. Kennedy, J. F.; Thorley, M.: Pharmaceutical Substances, 3rd ed., Kleeman, A.; Engel, J.; Kutscher, B.; Reichert, D.; Thieme: Stuttgart, 1999.
[7]. Gal, C. S.-L. Cardiovasc. Drug Rev. 2006, 19 (3), 201-214.
https://doi.org/10.1111/j.1527-3466.2001.tb00065.x
[8]. Natarajan, A.; Guo, Y.; Harbinski, F.; Fan, Y.-H.; Chen, H.; Luus, L.; Diercks, J.; Aktas, H.; Chorev, M.; Halperin, J. A. J. Med. Chem. 2004, 47 (21), 4979-4982.
https://doi.org/10.1021/jm0496234
[9]. Vullo, D.; De Luca, V.; Scozzafava, A.; Carginale, V.; Rossi, M.; Supuran, C. T.; Capasso, C. Bioorg. Med. Chem. 2013, 21 (15), 4521-4525.
https://doi.org/10.1016/j.bmc.2013.05.042
[10]. Wilson, C. O.; Gisvold, O.; Block, J. H., Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th ed.; Block, J., Beale, J., Wilson, C. O., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, 2004.
[11]. Levin, J. I.; Chen, J. M.; Du, M. T.; Nelson, F. C.; Killar, L. M.; Skala, S.; Sung, A.; Jin, G.; Cowling, R.; Barone, D.; March, C. J.; Mohler, K. M.; Black, R. A.; Skotnicki, J. S. Bioorg. Med. Chem. Lett. 2002, 12 (8), 1199-1202.
https://doi.org/10.1016/S0960-894X(02)00136-1
[12]. Kim, D.-K.; Lee, J. Y.; Lee, N.; Ryu, D. H.; Kim, J.-S.; Lee, S.; Choi, J.-Y.; Ryu, J.-H.; Kim, N.-H.; Im, G.-J.; Choi, W.-S.; Kim, T.-K. Bioorg. Med. Chem. 2001, 9 (11), 3013-3021.
https://doi.org/10.1016/S0968-0896(01)00200-0
[13]. Hu, B.; Ellingboe, J.; Han, S.; Largis, E.; Lim, K.; Malamas, M.; Mulvey, R.; Niu, C.; Oliphant, A.; Pelletier, J.; Singanallore, T.; Sum, F.-W.; Tillett, J.; Wong, V. Bioorg. Med. Chem. 2001, 9 (8), 2045-2059.
https://doi.org/10.1016/S0968-0896(01)00114-6
[14]. Ma, T.; Fuld, A. D.; Rigas, J. R.; Hagey, A. E.; Gordon, G. B.; Dmitrovsky, E.; Dragnev, K. H. Chemotherapy 2012, 58 (4), 321-329.
https://doi.org/10.1159/000343165
[15]. Adkins, J. C.; Faulds, D. Amprenavir. Drugs 1998, 55, 837-842.
https://doi.org/10.2165/00003495-199855060-00015
[16]. Roush, W. R.; Gwaltney, S. L.; Cheng, J.; Scheidt, K. A.; McKerrow, J. H.; Hansell, E. J. Am. Chem. Soc. 1998, 120 (42), 10994-10995.
https://doi.org/10.1021/ja981792o
[17]. Hoehn, H.; Polacek, I.; Schulze, E. J. Med. Chem. 1973, 16 (12), 1340-1346.
https://doi.org/10.1021/jm00270a006
[18]. Purohit, S. S.; Veerapur, V. P. Sch. Acad. J. Pharm. 2014, 3 (1), 26-37. https://saspublishers.com/media/articles/SAJP3126-37.pdf (accessed Jul 15, 2021).
[19]. Ma, F.; Liu, J.; Zhou, T.; Lei, M.; Chen, J.; Wang, X.; Zhang, Y.; Shen, X.; Hu, L. Eur. J. Med. Chem. 2018, 152, 307-317.
https://doi.org/10.1016/j.ejmech.2018.04.028
[20]. Williams, D. R. Chem. Rev. 1972, 72 (3), 203-213.
https://doi.org/10.1021/cr60277a001
[21]. Fathalla, O. A.; Awad, S. M.; Mohamed, M. S. Arch. Pharm. Res. 2005, 28 (11), 1205-1212.
https://doi.org/10.1007/BF02978199
[22]. Domagk, G. Angew. Chem. Weinheim Bergstr. Ger. 1935, 48 (42), 657-667.
https://doi.org/10.1002/ange.19350484202
[23]. Abdul Qadir, M.; Ahmed, M.; Aslam, H.; Waseem, S.; Shafiq, M. I. J. Chem. 2015, 2015, 1-8.
https://doi.org/10.1155/2015/524056
[24]. Casini, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. Curr. Cancer Drug Targets 2002, 2 (1), 55-75.
https://doi.org/10.2174/1568009023334060
[25]. Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. Curr. Med. Chem. 2003, 10 (11), 925-953.
https://doi.org/10.2174/0929867033457647
[26]. Thun, M. J.; Henley, S. J.; Patrono, C. J. Natl. Cancer Inst. 2002, 94 (4), 252-266.
https://doi.org/10.1093/jnci/94.4.252
[27]. Dalloul, H. M. MOJ Bioorg. Org. Chem. 2017, 1 (7), 255-260.
https://doi.org/10.15406/mojboc.2017.01.00044
[28]. Singh, V.; Kaushik, N. K.; Singh, R. Asian J. Res. Chem. 2011, 4, 339-347.
[29]. Sharma, R.; Soman, S. S. Eur. J. Med. Chem. 2015, 90, 342-350.
https://doi.org/10.1016/j.ejmech.2014.11.041
[30]. Kumar Parai, M.; Panda, G.; Srivastava, K.; Kumar Puri, S. Bioorg. Med. Chem. Lett. 2008, 18 (2), 776-781.
https://doi.org/10.1016/j.bmcl.2007.11.038
[31]. Mirian, M.; Zarghi, A.; Sadeghi, S.; Tabaraki, P.; Tavallaee, M.; Dadrass, O.; Sadeghi-Aliabadi, H. Iran. J. Pharm. Res. 2011, 10 (4), 741-748.
[32]. Kolaczek, A.; Fusiarz, I.; Lawecka, J.; Branowska, D. Institute of Chemistry, Siedlce University, Siedlce, Poland. https://www.researchgate.net/profile/Rafik_Karaman/post/im_working_on_sulphonamids_antibacterial_does_any_one_prepear_any_analogs_for_sulphonamids_and_which_rout_he_use_paper_are_needed_thanks/attachment/59d6355a79197b8077992ee6/AS%3A383878217912320%401468535107273/download/Sulfonamides+1.pdf (accessed Jul 15, 2021).
[33]. Bagul, S. D.; Rajput, J. D.; Tadavi, S. K.; Bendre, R. S. Res. Chem. Intermed. 2017, 43 (4), 2241-2252.
https://doi.org/10.1007/s11164-016-2759-5
[34]. Liu, Y.; Lu, Y.; Prashad, M.; Repic, O.; Blacklock, T. J. Adv. Synth. Catal. 2005, 347 (2-3), 217-219.
https://doi.org/10.1002/adsc.200404236
[35]. Akhter, F.; Hashim, A.; Khan, M. S.; Ahmad, S.; Iqbal, D.; Srivastava, A. K.; Siddiqui, M. H. S. Afr. J. Bot. 2013, 88, 265-272.
https://doi.org/10.1016/j.sajb.2013.06.024
[36]. Rajput, J. D.; Bagul, S. D.; Hosamani, A. A.; Patil, M. M.; Bendre, R. S. Res. Chem. Intermed. 2017, 43 (10), 5377-5393.
https://doi.org/10.1007/s11164-017-2933-4
[37]. Gilles, C.; Astier, J.-P.; Marchis-Mouren, G.; Cambillau, C.; Payan, F. C. Eur. J. Biochem. 1996, 238 (2), 561-569.
https://doi.org/10.1111/j.1432-1033.1996.0561z.x
Most read articles by the same author(s)
- Samina Karimkha Tadavi, Ratnamala Subhash Bendre, Satish Vittal Patil, Shubha Gaguna, Jamatsing Darbarsing Rajput, Synthesis, crystal structures and antimicrobial activity of palladium metal complexes of sulfonyl hydrazone ligands , European Journal of Chemistry: Vol. 11 No. 4 (2020): December 2020
- Gautam Prabhakar Sadawarte, Jamatsing Darbarsing Rajput, Amol Diliprao Kale, Rajendra Pralhadrao Phase, Vasant Bhagwan Jagrut, Synthesis, characterization, and biological activities of substituted pyridine-based azomethine scaffolds , European Journal of Chemistry: Vol. 15 No. 3 (2024): September 2024
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Downloads
Metrics
License Terms
Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).