![European Journal of Chemistry](/TempFiles/eurjchem_ojs3_header.jpg)
A dimeric oxidovanadium(V) complex derived from a hydrazonate ligand with an unusual asymmetrically bridged μ-(oxido)μ-(H2O){oxidovanadium(V)}2 core
Main Article Content
Abstract
The binuclear oxidovanadium(V) complex [{VO(L)}2(μ-O)(μ-H2O)]∙2CH3CN (1), where L2– is the dianion of the Schiff base 2-salicylaldehyde-2-hydroxybenzoylhydrazone, were prepared and characterized by elemental analysis, FTIR, 1H, 13C and 51V NMR. Furthermore, the crystal structure of the compound 1 was determined by single crystal X-ray diffractometry revealing a distorted octahedral O5N-coordination geometry around the V(V) acceptor centers. The vanadium ions are connected by the μ-O2– and the μ-H2O asymmetric bridges located in the edge between the two octahedrons which keeps a distance of 3.194 Å between the two vanadium centers. Crystal data for C32H28N6O10V2 (M =758.48 g/mol): orthorhombic, space group P212121 (no. 19), a = 12.9655(8) Å, b = 14.1902(9) Å, c = 18.4379(10) Å, V = 3392.3(4) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 0.616 mm-1, Dcalc = 1.485 g/cm3, 18803 reflections measured (3.622° ≤ 2Θ ≤ 56.704°), 8263 unique (Rint = 0.0473, Rsigma = 0.1020) which were used in all calculations. The final R1 was 0.0509 (I > 2σ(I)) and wR2 was 0.1531 (all data). The (VO)2(μ-O)(μ-H2O) core in compound 1 represents a rare case and few examples of similar type have been structurally characterized.
![icon graph](\TempFiles\icon-graph.png)
![icon graph](\TempFiles\icon-pdf.png)
![icon graph](\TempFiles\icon-pdf.png)
Article Details
[1]. Belokon, Y. N.; Clegg, W.; Harrington, R. W.; Young, C.; North, M. Tetrahedron 2007, 63, 5287-5299.
https://doi.org/10.1016/j.tet.2007.03.140
[2]. Kwiatkowski, E.; Romanowski, G.; Nowicki, W.; Kwiatkowski, M.; Suwinska, K. Polyhedron 2007, 26, 2559-2568.
https://doi.org/10.1016/j.poly.2006.12.032
[3]. Alvarez, H. M.; Andrade, J. L.; Pereira, N.; Muri, E. M. F.; Horn, A.; Barbosa, D. P.; Antunes, O. A. C. Catal. Commun. 2007, 8, 1336-1340.
https://doi.org/10.1016/j.catcom.2006.11.021
[4]. Langeslay, R. R.; Kaphan, D. M.; Marshall, C. L.; Stair, P. C.; Sattelberger, A. P.; Delferro, M. Chem. Rev. 2019, 119, 2128-2191.
https://doi.org/10.1021/acs.chemrev.8b00245
[5]. Sundararajan, M.; Park, B.; Baik. M. H. Inorg. Chem. 2019, 58, 16250-16255.
https://doi.org/10.1021/acs.inorgchem.9b02803
[6]. Adao, P.; Pessoa, J. C.; Henriques, R. T.; Kuznetsov, M. L.; Avecilla, F.; Maurya, M. R.; Kumar, U.; Correia, I. Inorg. Chem. 2009, 48, 3542-3561.
https://doi.org/10.1021/ic8017985
[7]. Thakur, S.; Banerjee, S.; Das, S.; Chattopadhyay, S. New J. Chem. 2019, 43, 18747-18759.
https://doi.org/10.1039/C9NJ04672K
[8]. Maurya, M. R.; Agarwal, S.; Bader, C.; Ebel, M.; Rehder, D. Dalton Trans. 2005, 537-544.
https://doi.org/10.1039/b416292g
[9]. Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L. Chem. Rev. 2004, 104, 849-902.
https://doi.org/10.1021/cr020607t
[10]. Rehder, D. Inorg. Chem. Commun. 2003, 6, 604-617.
https://doi.org/10.1016/S1387-7003(03)00050-9
[11]. Sakurai, H.; Kojima, Y.; Yoshikawa, Y.; Kawabe, K.; Yasui, H. Coord. Chem. Rev. 2002, 226, 187-198.
https://doi.org/10.1016/S0010-8545(01)00447-7
[12]. Maia, P. I. S.; Deflon, V. M.; Sousa, G. F.; Lemos, S. S.; Batista, A. A.; Nascimento, O. R.; Niquet, E.; Anorg, Z. Allg. Chem. 2007, 633, 783-789.
https://doi.org/10.1002/zaac.200600396
[13]. Bastos, A. M. B.; Silva, J. G.; Maia, P. I. S.; Deflon, V. M.; Batista, A. A.; Ferreira, A. V. M.; Botion, L. M.; Niquet, E.; Beraldo, H. Polyhedron 2008, 27, 1787-1794.
https://doi.org/10.1016/j.poly.2008.02.014
[14]. Crans, D. C.; Gambino, D.; Etcheverryc, S. B. New J. Chem. 2019, 43, 17535-17537.
https://doi.org/10.1039/C9NJ90156F
[15]. Maia, P. I. S.; Pavan, F. R.; Leite, C. Q. F.; Lemos, S. S.; de Sousa, G. F.; Batista, A. A.; Nascimento, O. R.; Ellena, J.; Castellano, E. E.; Niquet, E.; Deflon, V. M. Polyhedron 2009, 28, 398-406.
https://doi.org/10.1016/j.poly.2008.11.017
[16]. Zabin, S. A.; Abdelbaset, M. Eur. J. Chem. 2016, 7(3), 322‐328.
https://doi.org/10.5155/eurjchem.7.3.322-328.1444
[17]. Sutradhar, M.; Mukherjee, G.; Drew, M. G. B.; Ghosh, S. Inorg. Chem. 2006, 45, 5150-5161.
https://doi.org/10.1021/ic051120g
[18]. Pohlmann, A.; Nica, S.; Luong, T. K. K.; Plass, W. Inorg. Chem. Commun. 2005, 8, 289-292.
https://doi.org/10.1016/j.inoche.2004.12.028
[19]. Maurya, M. R.; Agarwal, S.; Abid, M.; Azam, A.; Bader, C.; Ebel, M.; Rehder, D. Dalton Trans. 2006, 937-947.
https://doi.org/10.1039/B512326G
[20]. Maia, P. I. S.; Deflon, V. M.; Souza, E. J.; Garcia, E.; Sousa, G. F.; Batista, A. A.; Figueiredo, A. T.; Niquet, E. Transit. Met. Chem. 2005, 30, 404-410.
https://doi.org/10.1007/s11243-004-6972-5
[21]. Datta, R.; Vittalacharya, R.; Gudennavar, B. S. Eur. J. Chem. 2014, 5(3), 394‐396.
https://doi.org/10.5155/eurjchem.5.3.394-396.1043
[22]. Rahman, V. P. M.; Mukhtar, S.; Ansari, W. H.; Lemiere, G. Eur. J. Med. Chem. 2005, 40, 173-184.
https://doi.org/10.1016/j.ejmech.2004.10.003
[23]. Dinda, R.; Sengupta, P.; Ghosh, S.; Mak, T. C. W. Inorg. Chem. 2002, 41, 1684-1688.
https://doi.org/10.1021/ic010865t
[24]. Gruning, C.; Schmidt, H.; Rehder, D. Inorg. Chem. Commun. 1999, 2, 57-59.
https://doi.org/10.1016/S1387-7003(99)00009-X
[25]. Schmidt, H.; Bashirpoor, M.; Rehder, D. J. Chem. Soc., Dalton Trans. 1996, 3865-3870.
https://doi.org/10.1039/dt9960003865
[26]. Maurya, M. R.; Kumar, A.; Abid, M.; Azam, A. Inorg. Chim. Acta. 2006, 359, 2439-2447.
https://doi.org/10.1016/j.ica.2006.02.032
[27]. Deflon, V. M.; Oliveira, D. M.; Sousa, G. F.; Batista, A. A.; Dinelli, L. R.; Castellano, E. Anorg. Z. Allg. Chem. 2002, 628, 1140-1144.
[28]. Xu, G.; Xia, Q. H.; Lu, X. H.; Zhang, Q.; Zhan, H. J. J. Mol. Catal. A: Chem. 2007, 266, 180-187.
https://doi.org/10.1016/j.molcata.2006.10.052
[29]. Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.
[30]. Sheldrick, G. M. SHELXL-2016, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 2016.
[31]. Vijayan, J. G. Eur. J. Chem. 2017, 8(4), 328‐332.
https://doi.org/10.5155/eurjchem.8.4.328-332.1571
[32]. Souza, P. C.; Maia, P. I. S.; Barros, H. B.; Leite, C. Q. F.; Deflon, V. M.; Pavan, F. R. Curr. Clin. Pharmacol. 2015, 10(1), 66-72.
https://doi.org/10.2174/1574884708666131229124748
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and Fundacao de Amparo a Pesquisa de Sso Paulo (FAPESP).
Most read articles by the same author(s)
- Pedro Henrique do Nascimento Pereira, Jackelinne Camargo Lima, Victor Marcelo Deflon, Geoffroy Roger Pointer Malpass, Ronaldo Junio de Oliveira, Pedro Ivo da Silva Maia, Nitroisatin dithiocarbazate: Synthesis, structural characterization, DFT, and docking studies , European Journal of Chemistry: Vol. 12 No. 3 (2021): September 2021
Downloads
Metrics
License Terms
Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).